Cargando…
An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications
This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializ...
Autores principales: | Ye, Fei, Lou, Xin Yuan, Sun, Lin Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378331/ https://www.ncbi.nlm.nih.gov/pubmed/28369096 http://dx.doi.org/10.1371/journal.pone.0173516 |
Ejemplares similares
-
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients’ health prediction
por: Bacanin, Nebojsa, et al.
Publicado: (2022) -
Feature Selection via Chaotic Antlion Optimization
por: Zawbaa, Hossam M., et al.
Publicado: (2016) -
Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems
por: Cho, Ming-Yuan, et al.
Publicado: (2017) -
Density-Based Penalty Parameter Optimization on C-SVM
por: Liu, Yun, et al.
Publicado: (2014)