Cargando…

Transcriptome analysis of Corynebacterium glutamicum in the process of recombinant protein expression in bioreactors

Corynebacterium glutamicum (C. glutamicum) is a favorable host cell for the production of recombinant proteins, such as important enzymes and pharmaceutical proteins, due to its excellent potential advantages. Herein, we sought to systematically explore the influence of recombinant protein expressio...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yang, Guo, Wenwen, Wang, Fen, Zhan, Chunjun, Yang, Yankun, Liu, Xiuxia, Bai, Zhonghu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378358/
https://www.ncbi.nlm.nih.gov/pubmed/28369109
http://dx.doi.org/10.1371/journal.pone.0174824
Descripción
Sumario:Corynebacterium glutamicum (C. glutamicum) is a favorable host cell for the production of recombinant proteins, such as important enzymes and pharmaceutical proteins, due to its excellent potential advantages. Herein, we sought to systematically explore the influence of recombinant protein expression on the transcription and metabolism of C. glutamicum. Two C. glutamicum strains, the wild-type strain and an engineered strain expressing enhanced green fluorescent protein (EGFP), were cultured in parallel in 5-L bioreactors to study the change in metabolism in the process of EGFP expression. The results revealed that EGFP expression had great effects on the growth and metabolism of C. glutamicum and contributed to metabolism-like anaerobic conditions as follows: glycolysis was enhanced, the TCA cycle was shunted, and Glu, Val, Met, lactate and acetate were accumulated to produce sufficient ATP for EGFP production and transfer. Many differentially expressed genes related to ribosomal protein, transcriptional regulators, and energy metabolism were found to be expressed in the presence of EGFP, laying the foundation for identifying genomic loci to change the flow of the host cell metabolism to improve the ability of expressing foreign proteins in C. glutamicum.