Cargando…

Nonparametric Risk and Nonparametric Odds in Quantitative Genetic Association Studies

The coefficient in a linear regression model is commonly employed to evaluate the genetic effect of a single nucleotide polymorphism associated with a quantitative trait under the assumption that the trait value follows a normal distribution or is appropriately normally distributed after a certain t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wei, Li, Qizhai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378889/
https://www.ncbi.nlm.nih.gov/pubmed/26174851
http://dx.doi.org/10.1038/srep12105
Descripción
Sumario:The coefficient in a linear regression model is commonly employed to evaluate the genetic effect of a single nucleotide polymorphism associated with a quantitative trait under the assumption that the trait value follows a normal distribution or is appropriately normally distributed after a certain transformation. When this assumption is violated, the distribution-free tests are preferred. In this work, we propose the nonparametric risk (NR) and nonparametric odds (NO), obtain the asymptotic normal distribution of estimated NR and then construct the confidence intervals. We also define the genetic models using NR, construct the test statistic under a given genetic model and a robust test, which are free of the genetic uncertainty. Simulation studies show that the proposed confidence intervals have satisfactory cover probabilities and the proposed test can control the type I error rates and is more powerful than the exiting ones under most of the considered scenarios. Application to gene of PTPN22 and genomic region of 6p21.33 from the Genetic Analysis Workshop 16 for association with the anticyclic citrullinated protein antibody further show their performances.