Cargando…
Inflammation-induced miRNA-155 inhibits self-renewal of neural stem cells via suppression of CCAAT/enhancer binding protein β (C/EBPβ) expression
Intracerebral inflammation resulting from injury or disease is implicated in disruption of neural regeneration and may lead to irreversible neuronal dysfunction. Analysis of inflammation-related microRNA profiles in various tissues, including the brain, has identified miR-155 among the most prominen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378916/ https://www.ncbi.nlm.nih.gov/pubmed/28240738 http://dx.doi.org/10.1038/srep43604 |
Sumario: | Intracerebral inflammation resulting from injury or disease is implicated in disruption of neural regeneration and may lead to irreversible neuronal dysfunction. Analysis of inflammation-related microRNA profiles in various tissues, including the brain, has identified miR-155 among the most prominent miRNAs linked to inflammation. Here, we hypothesize that miR-155 mediates inflammation-induced suppression of neural stem cell (NSC) self-renewal. Using primary mouse NSCs and human NSCs derived from induced pluripotent stem (iPS) cells, we demonstrate that three important genes involved in NSC self-renewal (Msi1, Hes1 and Bmi1) are suppressed by miR-155. We also demonstrate that suppression of self-renewal genes is mediated by the common transcription factor C/EBPβ, which is a direct target of miR-155. Our study describes an axis linking inflammation and miR-155 to expression of genes related to NSC self-renewal, suggesting that regulation of miR-155 may hold potential as a novel therapeutic strategy for treating neuroinflammatory diseases. |
---|