Cargando…
Massively Sub-wavelength Guiding of Electromagnetic Waves
Recently a new form of ultra-thin flexible waveguide consisting of a conducting comb-like structure with a thickness of the order of 1/600(th) of the operating wavelength was presented. However, whilst the thickness of the guide was massively sub-wavelength, the remaining dimensions (the height and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378945/ https://www.ncbi.nlm.nih.gov/pubmed/25510662 http://dx.doi.org/10.1038/srep07495 |
Sumario: | Recently a new form of ultra-thin flexible waveguide consisting of a conducting comb-like structure with a thickness of the order of 1/600(th) of the operating wavelength was presented. However, whilst the thickness of the guide was massively sub-wavelength, the remaining dimensions (the height and period of the comb) were much longer. In this paper we propose, and experimentally verify, that a modified guiding geometry consisting of a chain of ultra-thin conducting spirals allows guiding of electromagnetic waves with wavelengths that are many times (40+) longer than any characteristic dimension of the guide, enabling super-sub-wavelength guiding and localisation of electromagnetic energy. |
---|