Cargando…

Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared

Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plas...

Descripción completa

Detalles Bibliográficos
Autores principales: Willhammar, Tom, Sentosun, Kadir, Mourdikoudis, Stefanos, Goris, Bart, Kurttepeli, Mert, Bercx, Marnik, Lamoen, Dirk, Partoens, Bart, Pastoriza-Santos, Isabel, Pérez-Juste, Jorge, Liz-Marzán, Luis M., Bals, Sara, Van Tendeloo, Gustaaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379103/
https://www.ncbi.nlm.nih.gov/pubmed/28358039
http://dx.doi.org/10.1038/ncomms14925
_version_ 1782519541674278912
author Willhammar, Tom
Sentosun, Kadir
Mourdikoudis, Stefanos
Goris, Bart
Kurttepeli, Mert
Bercx, Marnik
Lamoen, Dirk
Partoens, Bart
Pastoriza-Santos, Isabel
Pérez-Juste, Jorge
Liz-Marzán, Luis M.
Bals, Sara
Van Tendeloo, Gustaaf
author_facet Willhammar, Tom
Sentosun, Kadir
Mourdikoudis, Stefanos
Goris, Bart
Kurttepeli, Mert
Bercx, Marnik
Lamoen, Dirk
Partoens, Bart
Pastoriza-Santos, Isabel
Pérez-Juste, Jorge
Liz-Marzán, Luis M.
Bals, Sara
Van Tendeloo, Gustaaf
author_sort Willhammar, Tom
collection PubMed
description Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu(1.5±x)Te nanocrystals can be determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations.
format Online
Article
Text
id pubmed-5379103
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53791032017-04-11 Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared Willhammar, Tom Sentosun, Kadir Mourdikoudis, Stefanos Goris, Bart Kurttepeli, Mert Bercx, Marnik Lamoen, Dirk Partoens, Bart Pastoriza-Santos, Isabel Pérez-Juste, Jorge Liz-Marzán, Luis M. Bals, Sara Van Tendeloo, Gustaaf Nat Commun Article Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu(1.5±x)Te nanocrystals can be determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations. Nature Publishing Group 2017-03-30 /pmc/articles/PMC5379103/ /pubmed/28358039 http://dx.doi.org/10.1038/ncomms14925 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Willhammar, Tom
Sentosun, Kadir
Mourdikoudis, Stefanos
Goris, Bart
Kurttepeli, Mert
Bercx, Marnik
Lamoen, Dirk
Partoens, Bart
Pastoriza-Santos, Isabel
Pérez-Juste, Jorge
Liz-Marzán, Luis M.
Bals, Sara
Van Tendeloo, Gustaaf
Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_full Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_fullStr Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_full_unstemmed Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_short Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_sort structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379103/
https://www.ncbi.nlm.nih.gov/pubmed/28358039
http://dx.doi.org/10.1038/ncomms14925
work_keys_str_mv AT willhammartom structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT sentosunkadir structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT mourdikoudisstefanos structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT gorisbart structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT kurttepelimert structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT bercxmarnik structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT lamoendirk structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT partoensbart structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT pastorizasantosisabel structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT perezjustejorge structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT lizmarzanluism structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT balssara structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT vantendeloogustaaf structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared