Cargando…

On-chip magnetic cooling of a nanoelectronic device

We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than c...

Descripción completa

Detalles Bibliográficos
Autores principales: Bradley, D. I., Guénault, A. M., Gunnarsson, D., Haley, R. P., Holt, S., Jones, A. T., Pashkin, Yu. A., Penttilä, J., Prance, J. R., Prunnila, M., Roschier, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379476/
https://www.ncbi.nlm.nih.gov/pubmed/28374845
http://dx.doi.org/10.1038/srep45566
_version_ 1782519613600301056
author Bradley, D. I.
Guénault, A. M.
Gunnarsson, D.
Haley, R. P.
Holt, S.
Jones, A. T.
Pashkin, Yu. A.
Penttilä, J.
Prance, J. R.
Prunnila, M.
Roschier, L.
author_facet Bradley, D. I.
Guénault, A. M.
Gunnarsson, D.
Haley, R. P.
Holt, S.
Jones, A. T.
Pashkin, Yu. A.
Penttilä, J.
Prance, J. R.
Prunnila, M.
Roschier, L.
author_sort Bradley, D. I.
collection PubMed
description We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.
format Online
Article
Text
id pubmed-5379476
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53794762017-04-07 On-chip magnetic cooling of a nanoelectronic device Bradley, D. I. Guénault, A. M. Gunnarsson, D. Haley, R. P. Holt, S. Jones, A. T. Pashkin, Yu. A. Penttilä, J. Prance, J. R. Prunnila, M. Roschier, L. Sci Rep Article We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds. Nature Publishing Group 2017-04-04 /pmc/articles/PMC5379476/ /pubmed/28374845 http://dx.doi.org/10.1038/srep45566 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Bradley, D. I.
Guénault, A. M.
Gunnarsson, D.
Haley, R. P.
Holt, S.
Jones, A. T.
Pashkin, Yu. A.
Penttilä, J.
Prance, J. R.
Prunnila, M.
Roschier, L.
On-chip magnetic cooling of a nanoelectronic device
title On-chip magnetic cooling of a nanoelectronic device
title_full On-chip magnetic cooling of a nanoelectronic device
title_fullStr On-chip magnetic cooling of a nanoelectronic device
title_full_unstemmed On-chip magnetic cooling of a nanoelectronic device
title_short On-chip magnetic cooling of a nanoelectronic device
title_sort on-chip magnetic cooling of a nanoelectronic device
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379476/
https://www.ncbi.nlm.nih.gov/pubmed/28374845
http://dx.doi.org/10.1038/srep45566
work_keys_str_mv AT bradleydi onchipmagneticcoolingofananoelectronicdevice
AT guenaultam onchipmagneticcoolingofananoelectronicdevice
AT gunnarssond onchipmagneticcoolingofananoelectronicdevice
AT haleyrp onchipmagneticcoolingofananoelectronicdevice
AT holts onchipmagneticcoolingofananoelectronicdevice
AT jonesat onchipmagneticcoolingofananoelectronicdevice
AT pashkinyua onchipmagneticcoolingofananoelectronicdevice
AT penttilaj onchipmagneticcoolingofananoelectronicdevice
AT prancejr onchipmagneticcoolingofananoelectronicdevice
AT prunnilam onchipmagneticcoolingofananoelectronicdevice
AT roschierl onchipmagneticcoolingofananoelectronicdevice