Cargando…
Detect tissue heterogeneity in gene expression data with BioQC
BACKGROUND: Gene expression data can be compromised by cells originating from other tissues than the target tissue of profiling. Failures in detecting such tissue heterogeneity have profound implications on data interpretation and reproducibility. A computational tool explicitly addressing the issue...
Autores principales: | Zhang, Jitao David, Hatje, Klas, Sturm, Gregor, Broger, Clemens, Ebeling, Martin, Burtin, Martine, Terzi, Fabiola, Pomposiello, Silvia Ines, Badi, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379536/ https://www.ncbi.nlm.nih.gov/pubmed/28376718 http://dx.doi.org/10.1186/s12864-017-3661-2 |
Ejemplares similares
-
Correction to: Detect tissue heterogeneity in gene expression data with BioQC
por: Zhang, Jitao David, et al.
Publicado: (2018) -
TileQC: A system for tile-based quality control of Solexa data
por: Dolan, Peter C, et al.
Publicado: (2008) -
RNA-QC-chain: comprehensive and fast quality control for RNA-Seq data
por: Zhou, Qian, et al.
Publicado: (2018) -
BLAST-QC: automated analysis of BLAST results
por: Torkian, Behzad, et al.
Publicado: (2020) -
iSeqQC: a tool for expression-based quality control in RNA sequencing
por: Kumar, Gaurav, et al.
Publicado: (2020)