Cargando…

Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress

Membrane-bound fatty acid desaturases (FADs) are of great importance and play multiple roles in plant growth and development. In the present study, 39 full-length FAD genes, based on database searches, were identified in tetraploid upland cotton (Gossypium hirsutum L.) and were phylogenetically clus...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Jiyu, Dong, Yating, Liu, Wei, He, Qiuling, Daud, M. K., Chen, Jinhong, Zhu, Shuijin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379561/
https://www.ncbi.nlm.nih.gov/pubmed/28374822
http://dx.doi.org/10.1038/srep45711
Descripción
Sumario:Membrane-bound fatty acid desaturases (FADs) are of great importance and play multiple roles in plant growth and development. In the present study, 39 full-length FAD genes, based on database searches, were identified in tetraploid upland cotton (Gossypium hirsutum L.) and were phylogenetically clustered into four subfamilies. Genomic localization revealed that 34 genes were mapped on 22 chromosomes, and five genes were positioned on the scaffold sequences. The FAD genes of G. hirsutum in the same subfamily had similar gene structures. The structures of paralogous genes were considerably conserved in exons number and introns length. It was suggested that the FAD gene families in G. hirsutum might be duplicated mainly by segmental duplication. Moreover, the FAD genes were differentially expressed in different G. hirsutum tissues in response to different levels of salt and cold stresses, as determined by qRT-PCR analysis. The identification and functional analysis of FAD genes in G. hirsutum may provide more candidate genes for genetic modification.