Cargando…
Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana
Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. H...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379922/ https://www.ncbi.nlm.nih.gov/pubmed/28283577 http://dx.doi.org/10.1085/jgp.201611737 |
_version_ | 1782519705583484928 |
---|---|
author | Saari, Paulus French, Andrew S. Torkkeli, Päivi H. Liu, Hongxia Immonen, Esa-Ville Frolov, Roman V. |
author_facet | Saari, Paulus French, Andrew S. Torkkeli, Päivi H. Liu, Hongxia Immonen, Esa-Ville Frolov, Roman V. |
author_sort | Saari, Paulus |
collection | PubMed |
description | Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s(1) because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light. |
format | Online Article Text |
id | pubmed-5379922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-53799222017-10-03 Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana Saari, Paulus French, Andrew S. Torkkeli, Päivi H. Liu, Hongxia Immonen, Esa-Ville Frolov, Roman V. J Gen Physiol Research Articles Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s(1) because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light. The Rockefeller University Press 2017-04-03 /pmc/articles/PMC5379922/ /pubmed/28283577 http://dx.doi.org/10.1085/jgp.201611737 Text en © 2017 Saari et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Research Articles Saari, Paulus French, Andrew S. Torkkeli, Päivi H. Liu, Hongxia Immonen, Esa-Ville Frolov, Roman V. Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana |
title | Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana |
title_full | Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana |
title_fullStr | Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana |
title_full_unstemmed | Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana |
title_short | Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana |
title_sort | distinct roles of light-activated channels trp and trpl in photoreceptors of periplaneta americana |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379922/ https://www.ncbi.nlm.nih.gov/pubmed/28283577 http://dx.doi.org/10.1085/jgp.201611737 |
work_keys_str_mv | AT saaripaulus distinctrolesoflightactivatedchannelstrpandtrplinphotoreceptorsofperiplanetaamericana AT frenchandrews distinctrolesoflightactivatedchannelstrpandtrplinphotoreceptorsofperiplanetaamericana AT torkkelipaivih distinctrolesoflightactivatedchannelstrpandtrplinphotoreceptorsofperiplanetaamericana AT liuhongxia distinctrolesoflightactivatedchannelstrpandtrplinphotoreceptorsofperiplanetaamericana AT immonenesaville distinctrolesoflightactivatedchannelstrpandtrplinphotoreceptorsofperiplanetaamericana AT frolovromanv distinctrolesoflightactivatedchannelstrpandtrplinphotoreceptorsofperiplanetaamericana |