Cargando…
Dissecting random and systematic differences between noisy composite data sets
Composite data sets measured on different objects are usually affected by random errors, but may also be influenced by systematic (genuine) differences in the objects themselves, or the experimental conditions. If the individual measurements forming each data set are quantitative and approximately n...
Autor principal: | Diederichs, Kay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379934/ https://www.ncbi.nlm.nih.gov/pubmed/28375141 http://dx.doi.org/10.1107/S2059798317000699 |
Ejemplares similares
Ejemplares similares
-
Making a difference in multi-data-set crystallography: simple and deterministic data-scaling/selection methods
por: Assmann, Greta M., et al.
Publicado: (2020) -
Mental chronometry in big noisy data
por: Wascher, Edmund, et al.
Publicado: (2022) -
Modeling noisy time-series data of crime with stochastic differential equations
por: Calatayud, Julia, et al.
Publicado: (2022) -
Clustering noisy data with deterministic annealing
por: Ohlsson, M
Publicado: (1993) -
Can Replication Save Noisy Microarray Data?
por: Wernisch, Lorenz
Publicado: (2002)