Cargando…
Can machine-learning improve cardiovascular risk prediction using routine clinical data?
BACKGROUND: Current approaches to predict cardiovascular risk fail to identify many people who would benefit from preventive treatment, while others receive unnecessary intervention. Machine-learning offers opportunity to improve accuracy by exploiting complex interactions between risk factors. We a...
Autores principales: | Weng, Stephen F., Reps, Jenna, Kai, Joe, Garibaldi, Jonathan M., Qureshi, Nadeem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380334/ https://www.ncbi.nlm.nih.gov/pubmed/28376093 http://dx.doi.org/10.1371/journal.pone.0174944 |
Ejemplares similares
-
Machine Learning and Real-World Data to Predict Lung Cancer Risk in Routine Care
por: Chandran, Urmila, et al.
Publicado: (2023) -
Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches
por: Weng, Stephen F., et al.
Publicado: (2019) -
Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care
por: Akyea, Ralph K., et al.
Publicado: (2020) -
Applying Machine Learning in Distributed Data Networks for Pharmacoepidemiologic and Pharmacovigilance Studies: Opportunities, Challenges, and Considerations
por: Wong, Jenna, et al.
Publicado: (2022) -
The value of aspartate aminotransferase and alanine aminotransferase in cardiovascular disease risk assessment
por: Weng, Stephen F, et al.
Publicado: (2015)