Cargando…

The Effect of Silver and Copper Nanoparticles on the Wheat—Pseudocercosporella herpotrichoides Pathosystem

The paper covers the study of the effects of silver (Ag) and copper (Cu) nanoparticles on wheat—Pseudocercosporella herpotrichoides pathosystem in general and, separately, on their interaction both with the plant and with the pathogen. Plants, treated with nonionic colloidal solutions of biogenic me...

Descripción completa

Detalles Bibliográficos
Autores principales: Belava, V. N., Panyuta, O. O., Yakovleva, G. M., Pysmenna, Y. M., Volkogon, M. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380650/
https://www.ncbi.nlm.nih.gov/pubmed/28381077
http://dx.doi.org/10.1186/s11671-017-2028-6
Descripción
Sumario:The paper covers the study of the effects of silver (Ag) and copper (Cu) nanoparticles on wheat—Pseudocercosporella herpotrichoides pathosystem in general and, separately, on their interaction both with the plant and with the pathogen. Plants, treated with nonionic colloidal solutions of biogenic metal nanoparticles of Ag and Cu, have taken seed treatment as stress and have demonstrated the same changes in the dynamic patterns of thiobarbituric acid reactive substances (TBARS) content as a seedling infection or in its combination with a nanoparticle treatment. The wheat variety, which is sensitive to pathogen action, has showed a substantial (100%) increase in the TBARS contents, while the other varieties has shown lesser (40%) changes in the TBARS content as compared to the control. Besides, both silver and copper nanoparticles have not affected the growth and development of P. herpotrichoides, thus suggesting that the effect of nanoparticles is determined by the plant’s responses to the pathogen rather than the phytotoxic action of the copper or silver nanoparticles, at least during the initial stages of the pathological process.