Cargando…

A novel label-free fluorescence assay for one-step sensitive detection of Hg(2+) in environmental drinking water samples

A novel label-free fluorescence assay for detection of Hg(2+) was developed based on the Hg(2+)-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg(2+)-T compl...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ya, Liu, Nan, Liu, Hui, Wang, Yu, Hao, Yuwei, Ma, Xinhua, Li, Xiaoli, Huo, Yapeng, Lu, Jiahai, Tang, Shuge, Wang, Caiqin, Zhang, Yinhong, Gao, Zhixian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380999/
https://www.ncbi.nlm.nih.gov/pubmed/28378768
http://dx.doi.org/10.1038/srep45974
Descripción
Sumario:A novel label-free fluorescence assay for detection of Hg(2+) was developed based on the Hg(2+)-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg(2+)-T complex and folded into a stable hairpin structure in the presence of Hg(2+) in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5–1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg(2+) was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg(2+) without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg(2+) spiked in these samples were 95.05–103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management.