Cargando…

A Crucial Role of CXCL14 for Promoting Regulatory T Cells Activation in Stroke

Inflammatory processes have a detrimental role in the pathophysiology of ischemic stroke. However, little is known about the endogenous anti-inflammatory mechanisms in ischemic brain. Here, we identify CXCL14 as a critical mediator of these mechanisms. CXCL14 levels were upregulated in the ischemic...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hsu-Tung, Liu, Shih-Ping, Lin, Chen-Huan, Lee, Sophie Wei, Hsu, Chung Y., Sytwu, Huey-Kang, Hsieh, Chia-Hung, Shyu, Woei-Cherng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381249/
https://www.ncbi.nlm.nih.gov/pubmed/28382159
http://dx.doi.org/10.7150/thno.17558
Descripción
Sumario:Inflammatory processes have a detrimental role in the pathophysiology of ischemic stroke. However, little is known about the endogenous anti-inflammatory mechanisms in ischemic brain. Here, we identify CXCL14 as a critical mediator of these mechanisms. CXCL14 levels were upregulated in the ischemic brains of humans and rodents. Moreover, hypoxia inducible factor-1α (HIF-1α) drives hypoxia- or cerebral ischemia (CI)-dependent CXCL14 expression via directly binding to the CXCL14 promoter. Depletion of CXCL14 inhibited the accumulation of immature dendritic cells (iDC) or regulatory T cells (Treg) and increased the infarct volume, whereas the supplementation of CXCL14 had the opposite effects. CXCL14 promoted the adhesion, migration, and homing of circulating CD11c(+) iDC to the ischemic tissue via the upregulation of the cellular prion protein (PrP(C)), PECAM-1, and MMPs. The accumulation of Treg in ischemic areas of the brain was mediated through a cooperative effect of CXCL14 and iDC-secreted IL-2-induced Treg differentiation. Interestingly, CXCL14 largely promoted IL-2-induced Treg differentiation. These findings indicate that CXCL14 is a critical immunomodulator involved in the stroke-induced inflammatory reaction. Passive CXCL14 supplementation provides a tractable path for clinical translation in the improvement of stroke-induced neuroinflammation.