Cargando…
The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of “Dorsal Stream Vulnerability”—motion, mathematics, amblyopia, actions, and attention
Research in the Visual Development Unit on “dorsal stream vulnerability' (DSV) arose from research in two somewhat different areas. In the first, using cortical milestones for local and global processing from our neurobiological model, we identified cerebral visual impairment in infants in the...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381328/ https://www.ncbi.nlm.nih.gov/pubmed/28362900 http://dx.doi.org/10.1167/17.3.26 |
_version_ | 1782519918314389504 |
---|---|
author | Atkinson, Janette |
author_facet | Atkinson, Janette |
author_sort | Atkinson, Janette |
collection | PubMed |
description | Research in the Visual Development Unit on “dorsal stream vulnerability' (DSV) arose from research in two somewhat different areas. In the first, using cortical milestones for local and global processing from our neurobiological model, we identified cerebral visual impairment in infants in the first year of life. In the second, using photo/videorefraction in population refractive screening programs, we showed that infant spectacle wear could reduce the incidence of strabismus and amblyopia, but many preschool children, who had been significantly hyperopic earlier, showed visuo-motor and attentional deficits. This led us to compare developing dorsal and ventral streams, using sensitivity to global motion and form as signatures, finding deficits in motion sensitivity relative to form in children with Williams syndrome, or perinatal brain injury in hemiplegia or preterm birth. Later research showed that this “DSV” was common across many disorders, both genetic and acquired, from autism to amblyopia. Here, we extend DSV to be a cluster of problems, common to many disorders, including poor motion sensitivity, visuo-motor spatial integration for planning actions, attention, and number skills. In current research, we find that individual differences in motion coherence sensitivity in typically developing children are correlated with MRI measures of area variations in parietal lobe, fractional anisotropy (from TBSS) of the superior longitudinal fasciculus, and performance on tasks of mathematics and visuo-motor integration. These findings suggest that individual differences in motion sensitivity reflect decision making and attentional control rather than integration in MT/V5 or V3A. Its neural underpinnings may be related to Duncan's “multiple-demand” (MD) system. |
format | Online Article Text |
id | pubmed-5381328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-53813282017-04-07 The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of “Dorsal Stream Vulnerability”—motion, mathematics, amblyopia, actions, and attention Atkinson, Janette J Vis Review Research in the Visual Development Unit on “dorsal stream vulnerability' (DSV) arose from research in two somewhat different areas. In the first, using cortical milestones for local and global processing from our neurobiological model, we identified cerebral visual impairment in infants in the first year of life. In the second, using photo/videorefraction in population refractive screening programs, we showed that infant spectacle wear could reduce the incidence of strabismus and amblyopia, but many preschool children, who had been significantly hyperopic earlier, showed visuo-motor and attentional deficits. This led us to compare developing dorsal and ventral streams, using sensitivity to global motion and form as signatures, finding deficits in motion sensitivity relative to form in children with Williams syndrome, or perinatal brain injury in hemiplegia or preterm birth. Later research showed that this “DSV” was common across many disorders, both genetic and acquired, from autism to amblyopia. Here, we extend DSV to be a cluster of problems, common to many disorders, including poor motion sensitivity, visuo-motor spatial integration for planning actions, attention, and number skills. In current research, we find that individual differences in motion coherence sensitivity in typically developing children are correlated with MRI measures of area variations in parietal lobe, fractional anisotropy (from TBSS) of the superior longitudinal fasciculus, and performance on tasks of mathematics and visuo-motor integration. These findings suggest that individual differences in motion sensitivity reflect decision making and attentional control rather than integration in MT/V5 or V3A. Its neural underpinnings may be related to Duncan's “multiple-demand” (MD) system. The Association for Research in Vision and Ophthalmology 2017-03-31 /pmc/articles/PMC5381328/ /pubmed/28362900 http://dx.doi.org/10.1167/17.3.26 Text en Copyright 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Review Atkinson, Janette The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of “Dorsal Stream Vulnerability”—motion, mathematics, amblyopia, actions, and attention |
title | The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of “Dorsal Stream Vulnerability”—motion, mathematics, amblyopia, actions, and attention |
title_full | The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of “Dorsal Stream Vulnerability”—motion, mathematics, amblyopia, actions, and attention |
title_fullStr | The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of “Dorsal Stream Vulnerability”—motion, mathematics, amblyopia, actions, and attention |
title_full_unstemmed | The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of “Dorsal Stream Vulnerability”—motion, mathematics, amblyopia, actions, and attention |
title_short | The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of “Dorsal Stream Vulnerability”—motion, mathematics, amblyopia, actions, and attention |
title_sort | davida teller award lecture, 2016: visual brain development: a review of “dorsal stream vulnerability”—motion, mathematics, amblyopia, actions, and attention |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381328/ https://www.ncbi.nlm.nih.gov/pubmed/28362900 http://dx.doi.org/10.1167/17.3.26 |
work_keys_str_mv | AT atkinsonjanette thedavidatellerawardlecture2016visualbraindevelopmentareviewofdorsalstreamvulnerabilitymotionmathematicsamblyopiaactionsandattention AT atkinsonjanette davidatellerawardlecture2016visualbraindevelopmentareviewofdorsalstreamvulnerabilitymotionmathematicsamblyopiaactionsandattention |