Cargando…

Systematic Profiling of Short Tandem Repeats in the Cattle Genome

Short tandem repeats (STRs), or microsatellites, are genetic variants with repetitive 2–6 base pair motifs in many mammalian genomes. Using high-throughput sequencing and experimental validations, we systematically profiled STRs in five Holsteins. We identified a total of 60,106 microsatellites and...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Lingyang, Haasl, Ryan J., Sun, Jiajie, Zhou, Yang, Bickhart, Derek M., Li, Junya, Song, Jiuzhou, Sonstegard, Tad S., Van Tassell, Curtis P., Lewin, Harris A., Liu, George E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381564/
https://www.ncbi.nlm.nih.gov/pubmed/28172841
http://dx.doi.org/10.1093/gbe/evw256
Descripción
Sumario:Short tandem repeats (STRs), or microsatellites, are genetic variants with repetitive 2–6 base pair motifs in many mammalian genomes. Using high-throughput sequencing and experimental validations, we systematically profiled STRs in five Holsteins. We identified a total of 60,106 microsatellites and generated the first high-resolution STR map, representing a substantial pool of polymorphism in dairy cattle. We observed significant STRs overlap with functional genes and quantitative trait loci (QTL). We performed evolutionary and population genetic analyses using over 20,000 common dinucleotide STRs. Besides corroborating the well-established positive correlation between allele size and variance in allele size, these analyses also identified dozens of outlier STRs based on two anomalous relationships that counter expected characteristics of neutral evolution. And one STR locus overlaps with a significant region of a summary statistic designed to detect STR-related selection. Additionally, our results showed that only 57.1% of STRs located within SNP-based linkage disequilibrium (LD) blocks whereas the other 42.9% were out of blocks. Therefore, a substantial number of STRs are not tagged by SNPs in the cattle genome, likely due to STR's distinct mutation mechanism and elevated polymorphism. This study provides the foundation for future STR-based studies of cattle genome evolution and selection.