Cargando…

Functional footprinting of regulatory DNA

Regulatory regions harbor multiple transcription factor recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe a facile approach that exploits the error-prone nature of genome editing-induced double-strand break repair to ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Vierstra, Jeff, Reik, Andreas, Chang, Kai-Hsin, Stehling-Sun, Sandra, Zhou, Yuan-Yue, Hinkley, Sarah J., Paschon, David E., Zhang, L., Psatha, Nikoletta, Bendana, Yuri R., O'Neill, Colleen M., Song, Alex H., Mich, Andrea, Liu, Pei-Qi, Lee, Gary, Bauer, Daniel E., Holmes, Michael C., Orkin, Stuart H., Papayannopoulou, Thalia, Stamatoyannopoulos, George, Rebar, Edward J., Gregory, Philip D., Urnov, Fyodor D., Stamatoyannopoulos, John A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381659/
https://www.ncbi.nlm.nih.gov/pubmed/26322838
http://dx.doi.org/10.1038/nmeth.3554
Descripción
Sumario:Regulatory regions harbor multiple transcription factor recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe a facile approach that exploits the error-prone nature of genome editing-induced double-strand break repair to map functional elements within regulatory DNA at nucleotide resolution. We demonstrate the approach on a human erythroid enhancer, revealing single TF recognition sites that gate the majority of downstream regulatory function.