Cargando…
Dynamic predictions using flexible joint models of longitudinal and time‐to‐event data
Joint models for longitudinal and time‐to‐event data are particularly relevant to many clinical studies where longitudinal biomarkers could be highly associated with a time‐to‐event outcome. A cutting‐edge research direction in this area is dynamic predictions of patient prognosis (e.g., survival pr...
Autores principales: | Barrett, Jessica, Su, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381717/ https://www.ncbi.nlm.nih.gov/pubmed/28110499 http://dx.doi.org/10.1002/sim.7209 |
Ejemplares similares
-
Joint modeling of longitudinal and time-to-event data
por: Elashoff, Robert, et al.
Publicado: (2016) -
Joint modelling of repeated measurements and time-to-event outcomes: flexible model specification and exact likelihood inference
por: Barrett, Jessica, et al.
Publicado: (2015) -
Joint models for longitudinal and time-to-event data : with applications in R
por: Rizopoulos, Dimitris
Publicado: (2012) -
Dynamic prediction of outcome for patients with severe aortic stenosis: application of joint models for longitudinal and time-to-event data
por: Andrinopoulou, Eleni-Rosalina, et al.
Publicado: (2015) -
Joint Models for Longitudinal and Time-to-Event Data: With Applications in R
por: Rizopoulos, Dimitris
Publicado: (2012)