Cargando…

Crowding-induced Cooperativity in DNA Surface Hybridization

High density DNA brush is not only used to model cellular crowding, but also has a wide application in DNA-functionalized materials. Experiments have shown complicated cooperative hybridization/melting phenomena in these systems, raising the question that how molecular crowding influences DNA hybrid...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Qun-li, Ren, Chun-lai, Su, Xiao-hang, Ma, Yu-qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381746/
https://www.ncbi.nlm.nih.gov/pubmed/25875056
http://dx.doi.org/10.1038/srep09217
Descripción
Sumario:High density DNA brush is not only used to model cellular crowding, but also has a wide application in DNA-functionalized materials. Experiments have shown complicated cooperative hybridization/melting phenomena in these systems, raising the question that how molecular crowding influences DNA hybridization. In this work, a theoretical modeling including all possible inter and intramolecular interactions, as well as molecular details for different species, is proposed. We find that molecular crowding can lead to two distinct cooperative behaviours: negatively cooperative hybridization marked by a broader transition width, and positively cooperative hybridization with a sharper transition, well reconciling the experimental findings. Moreover, a phase transition as a result of positive cooperativity is also found. Our study provides new insights in crowding and compartmentation in cell, and has the potential value in controlling surface morphologies of DNA functionalized nano-particles.