Cargando…
Field evaluation of a blood based test for active tuberculosis in endemic settings
Over 9 million new active tuberculosis (TB) cases emerge each year from an enormous pool of 2 billion individuals latently infected with Mycobacterium tuberculosis (M. tb.) worldwide. About 3 million new TB cases per year are unaccounted for, and 1.5 million die. TB, however, is generally curable if...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381859/ https://www.ncbi.nlm.nih.gov/pubmed/28380055 http://dx.doi.org/10.1371/journal.pone.0173359 |
Sumario: | Over 9 million new active tuberculosis (TB) cases emerge each year from an enormous pool of 2 billion individuals latently infected with Mycobacterium tuberculosis (M. tb.) worldwide. About 3 million new TB cases per year are unaccounted for, and 1.5 million die. TB, however, is generally curable if diagnosed correctly and in a timely manner. The current diagnostic methods for TB, including state-of-the-art molecular tests, have failed in delivering the capacity needed in endemic countries to curtail this ongoing pandemic. Efficient, cost effective and scalable diagnostic approaches are critically needed. We report a multiplex TB serology panel using microbead suspension array containing a combination of 11 M.tb. antigens that demonstrated overall sensitivity of 91% in serum/plasma samples from TB patients confirmed by culture. Group wise sensitivities for sputum smear positive and negative patients were 95%, and 88%, respectively. Specificity of the test was 96% in untreated COPD patients and 91% in general healthy population. The sensitivity of this test is superior to that of the frontline sputum smear test with a comparable specificity (30–70%, and 93–99%, respectively). The multiplex serology test can be performed with scalability from 1 to 360 patients per day, and is amenable to automation for higher (1000s per day) throughput, thus enabling a scalable clinical work flow model for TB endemic countries. Taken together, the above results suggest that well defined antibody profiles in blood, analyzed by an appropriate technology platform, offer a valuable approach to TB diagnostics in endemic countries. |
---|