Cargando…

The rhizospheric microbial community structure and diversity of deciduous and evergreen forests in Taihu Lake area, China

Soil bacteria are important drivers of biogeochemical cycles and participate in many nutrient transformations in the soil. Meanwhile, bacterial diversity and community composition are related to soil physic-chemical properties and vegetation factors. However, how the soil and vegetation factors affe...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Zhiwen, Hu, Xiaolong, Li, Xunhang, Zhang, Yanzhou, Jiang, Leichun, Li, Jing, Guan, Zhengbing, Cai, Yujie, Liao, Xiangru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381875/
https://www.ncbi.nlm.nih.gov/pubmed/28379996
http://dx.doi.org/10.1371/journal.pone.0174411
Descripción
Sumario:Soil bacteria are important drivers of biogeochemical cycles and participate in many nutrient transformations in the soil. Meanwhile, bacterial diversity and community composition are related to soil physic-chemical properties and vegetation factors. However, how the soil and vegetation factors affect the diversity and community composition of bacteria is poorly understood, especially for bacteria associated with evergreen and deciduous trees in subtropical forest ecosystems. In the present paper, the microbial communities of rhizospheric soils associated with different types of trees were analyzed by Illumina MiSeq sequencing the V3-V4 region of the 16S rRNA gene. A total of 121,219 effective 16S rRNA gene sequences were obtained, which were classified into 29 bacterial phyla and 2 archaeal phyla. The dominant phyla across all samples (>5% of good-quality sequences in each sample) were Proteobacteria, Acidobacteria, Firmicutes and Bacteroidetes. The bacterial community composition and diversity were largely affected by both soil pH and tree species. The soil pH was the key factor influencing bacterial diversity, with lower pH associated with less diverse communities. Meanwhile, the contents of NO(3)(−) were higher in evergreen tree soils than those associated with deciduous trees, while less NH(4)(+) than those associated with deciduous trees, leading to a lower pH and indirectly influencing the diversity and composition of the bacteria. The co-occurrence patterns were assessed by network analysis. A total of 415 pairs of significant and robust correlations (co-occurrence and negative) were identified from 89 genera. Sixteen hubs of co-occurrence patterns, mainly under the phyla Acidobacteria, Proteobacteria, Firmicutes and Bacteroidetes, may play important roles in sustaining the stability of the rhizospheric microbial communities. In general, our results suggested that local environmental conditions and soil pH were important in shaping the bacterial community of the Taihu Lake zone in east China.