Cargando…
Rat superior colliculus neurons respond to large visual stimuli flashed outside the classical receptive field
Spatial integration of visual stimuli is a crucial step in visual information processing yet it is often unclear where this integration takes place in the visual system. In the superficial layers of the superior colliculus that form an early stage in visual information processing, neurons are known...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381878/ https://www.ncbi.nlm.nih.gov/pubmed/28379979 http://dx.doi.org/10.1371/journal.pone.0174409 |
Sumario: | Spatial integration of visual stimuli is a crucial step in visual information processing yet it is often unclear where this integration takes place in the visual system. In the superficial layers of the superior colliculus that form an early stage in visual information processing, neurons are known to have relatively small visual receptive fields, suggesting limited spatial integration. Here it is shown that at least for rats this conclusion may be wrong. Extracellular recordings in urethane-anaesthetized young adult rats (1.5–2 months old) showed that large stimuli of over 10° could evoke detectable responses well outside the borders of ‘classical’ receptive fields determined by employing 2° – 3.5° stimuli. The presence of responses to large stimuli well outside these ‘classical’ receptive fields could not be explained neither by partial overlap between the visual stimulus and the receptive field, nor by reflections or light dispersion from the stimulation site. However, very low frequency (<0.1 Hz) residual responses to small stimuli presented outside the receptive field may explain the obtained results if we assume that the frequency of action potentials during a response to a stimulus outside RF is proportional to the stimulus area. Thus, responses to large stimuli outside RF may be predicted by scaling according to the stimulus area of the responses to small stimuli. These data demonstrate that neurons in the superficial layers of the superior colliculus are capable of integrating visual stimuli over much larger area than it can be deduced from the classical receptive field. |
---|