Cargando…
Applying an Archetype-Based Approach to Electroencephalography/Event-Related Potential Experiments in the EEGBase Resource
PURPOSE: The purpose of this study is to investigate the feasibility of applying openEHR (an archetype-based approach for electronic health records representation) to modeling data stored in EEGBase, a portal for experimental electroencephalography/event-related potential (EEG/ERP) data management....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382193/ https://www.ncbi.nlm.nih.gov/pubmed/28428750 http://dx.doi.org/10.3389/fninf.2017.00024 |
Sumario: | PURPOSE: The purpose of this study is to investigate the feasibility of applying openEHR (an archetype-based approach for electronic health records representation) to modeling data stored in EEGBase, a portal for experimental electroencephalography/event-related potential (EEG/ERP) data management. The study evaluates re-usage of existing openEHR archetypes and proposes a set of new archetypes together with the openEHR templates covering the domain. The main goals of the study are to (i) link existing EEGBase data/metadata and openEHR archetype structures and (ii) propose a new openEHR archetype set describing the EEG/ERP domain since this set of archetypes currently does not exist in public repositories. METHODS: The main methodology is based on the determination of the concepts obtained from EEGBase experimental data and metadata that are expressible structurally by the openEHR reference model and semantically by openEHR archetypes. In addition, templates as the third openEHR resource allow us to define constraints over archetypes. Clinical Knowledge Manager (CKM), a public openEHR archetype repository, was searched for the archetypes matching the determined concepts. According to the search results, the archetypes already existing in CKM were applied and the archetypes not existing in the CKM were newly developed. openEHR archetypes support linkage to external terminologies. To increase semantic interoperability of the new archetypes, binding with the existing odML electrophysiological terminology was assured. Further, to increase structural interoperability, also other current solutions besides EEGBase were considered during the development phase. Finally, a set of templates using the selected archetypes was created to meet EEGBase requirements. RESULTS: A set of eleven archetypes that encompassed the domain of experimental EEG/ERP measurements were identified. Of these, six were reused without changes, one was extended, and four were newly created. All archetypes were arranged in the templates reflecting the EEGBase metadata structure. A mechanism of odML terminology referencing was proposed to assure semantic interoperability of the archetypes. The openEHR approach was found to be useful not only for clinical purposes but also for experimental data modeling. |
---|