Cargando…

Development of an efficient technique for gene deletion and allelic exchange in Geobacillus spp.

BACKGROUND: Geobacillus thermoglucosidasius is a thermophilic, natural ethanol producer and a potential candidate for commercial bioethanol production. Previously, G. thermoglucosidasius has been genetically modified to create an industrially-relevant ethanol production strain. However, creating chr...

Descripción completa

Detalles Bibliográficos
Autores principales: Bacon, Leann F., Hamley-Bennett, Charlotte, Danson, Michael J., Leak, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382374/
https://www.ncbi.nlm.nih.gov/pubmed/28381218
http://dx.doi.org/10.1186/s12934-017-0670-4
Descripción
Sumario:BACKGROUND: Geobacillus thermoglucosidasius is a thermophilic, natural ethanol producer and a potential candidate for commercial bioethanol production. Previously, G. thermoglucosidasius has been genetically modified to create an industrially-relevant ethanol production strain. However, creating chromosomal integrations and deletions in Geobacillus spp. is laborious. Here we describe a new technique to create marker-less mutations in Geobacillus utilising a novel homologous recombination process. RESULTS: Our technique incorporates counter-selection using β-glucosidase and the synthetic substrate X-Glu, in combination with a two-step homologous recombination process where the first step is a selectable double-crossover event that deletes the target gene. We demonstrate how we have utilised this technique to delete two components of the proteinaceous shell of the Geobacillus propanediol-utilization microcompartment, and simultaneously introduce an oxygen-sensitive promoter in front of the remaining shell-component genes and confirm its functional incorporation. CONCLUSION: The selectable deletion of the target gene in the first step of our process prevents re-creation of wild-type which can occur in most homologous recombination techniques, circumventing the need for PCR screening to identify mutants. Our new technique therefore offers a faster, more efficient method of creating mutants in Geobacillus.