Cargando…

Efficient and cost-effective genetic analysis of products of conception and fetal tissues using a QF-PCR/array CGH strategy; five years of data

BACKGROUND: Traditional testing of miscarriage products involved culture of tissue followed by G-banded chromosome analysis; this approach has a high failure rate, is labour intensive and has a resolution of around 10 Mb. G-banded chromosome analysis has been replaced by molecular techniques in some...

Descripción completa

Detalles Bibliográficos
Autores principales: Donaghue, Celia, Davies, Nada, Ahn, Joo Wook, Thomas, Helen, Ogilvie, Caroline Mackie, Mann, Kathy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382376/
https://www.ncbi.nlm.nih.gov/pubmed/28396697
http://dx.doi.org/10.1186/s13039-017-0313-9
Descripción
Sumario:BACKGROUND: Traditional testing of miscarriage products involved culture of tissue followed by G-banded chromosome analysis; this approach has a high failure rate, is labour intensive and has a resolution of around 10 Mb. G-banded chromosome analysis has been replaced by molecular techniques in some laboratories; we previously introduced a QF-PCR/MLPA testing strategy in 2007. To improve diagnostic yield and efficiency we have now updated our testing strategy to a more comprehensive QF-PCR assay followed by array CGH. Here we describe the results from the last 5 years of service. METHODS: Fetal tissue samples and products of conception were tested using QF-PCR which will detect aneuploidy for chromosomes 13, 14, 15, 16, 18, 21, 22, X and Y. Samples that were normal were then tested by aCGH and all imbalance >1Mb and fully penetrant clinically significant imbalance <1Mb was reported. RESULTS: QF-PCR analysis identified aneuploidy/triploidy in 25.6% of samples. aCGH analysis detected imbalance in a further 9.6% of samples; this included 1.8% with submicroscopic imbalance and 0.5% of uncertain clinical significance. This approach has a failure rate of 1.4%, compared to 30% for G-banded chromosome analysis. CONCLUSIONS: This efficient QF-PCR/aCGH strategy has a lower failure rate and higher diagnostic yield than karyotype or MLPA strategies; both findings are welcome developments for couples with recurrent miscarriage.