Cargando…
Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga
BACKGROUND: Establishing populations in ecologically marginal habitats may require substantial phenotypic changes that come about through phenotypic plasticity, local adaptation, or both. West-Eberhard’s “plasticity-first” model suggests that plasticity allows for rapid colonisation of a new environ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382403/ https://www.ncbi.nlm.nih.gov/pubmed/28381278 http://dx.doi.org/10.1186/s12898-017-0124-1 |
_version_ | 1782520092286779392 |
---|---|
author | Johansson, Daniel Pereyra, Ricardo T. Rafajlović, Marina Johannesson, Kerstin |
author_facet | Johansson, Daniel Pereyra, Ricardo T. Rafajlović, Marina Johannesson, Kerstin |
author_sort | Johansson, Daniel |
collection | PubMed |
description | BACKGROUND: Establishing populations in ecologically marginal habitats may require substantial phenotypic changes that come about through phenotypic plasticity, local adaptation, or both. West-Eberhard’s “plasticity-first” model suggests that plasticity allows for rapid colonisation of a new environment, followed by directional selection that develops local adaptation. Two predictions from this model are that (i) individuals of the original population have high enough plasticity to survive and reproduce in the marginal environment, and (ii) individuals of the marginal population show evidence of local adaptation. Individuals of the macroalga Fucus vesiculosus from the North Sea colonised the hyposaline (≥2–3‰) Baltic Sea less than 8000 years ago. The colonisation involved a switch from fully sexual to facultative asexual recruitment with release of adventitious branches that grow rhizoids and attach to the substratum. To test the predictions from the plasticity-first model we reciprocally transplanted F. vesiculosus from the original population (ambient salinity 24‰) and from the marginal population inside the Baltic Sea (ambient salinity 4‰). We also transplanted individuals of the Baltic endemic sister species F. radicans from 4 to 24‰. We assessed the degree of plasticity and local adaptation in growth and reproductive traits after 6 months by comparing the performance of individuals in 4 and 24‰. RESULTS: Branches of all individuals survived the 6 months period in both salinities, but grew better in their native salinity. Baltic Sea individuals more frequently developed asexual traits while North Sea individuals initiated formation of receptacles for sexual reproduction. CONCLUSIONS: Marine individuals of F. vesiculosus are highly plastic with respect to salinity and North Sea populations can survive the extreme hyposaline conditions of the Baltic Sea without selective mortality. Plasticity alone would thus allow for an initial establishment of this species inside the postglacial Baltic Sea at salinities where reproduction remains functional. Since establishment, the Baltic Sea populations have evolved adaptations to extreme hyposaline waters and have in addition evolved asexual recruitment that, however, tends to impede local adaptation. Overall, our results support the “plasticity-first” model for the initial colonisation of the Baltic Sea by Fucus vesiculosus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12898-017-0124-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5382403 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-53824032017-04-10 Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga Johansson, Daniel Pereyra, Ricardo T. Rafajlović, Marina Johannesson, Kerstin BMC Ecol Research Article BACKGROUND: Establishing populations in ecologically marginal habitats may require substantial phenotypic changes that come about through phenotypic plasticity, local adaptation, or both. West-Eberhard’s “plasticity-first” model suggests that plasticity allows for rapid colonisation of a new environment, followed by directional selection that develops local adaptation. Two predictions from this model are that (i) individuals of the original population have high enough plasticity to survive and reproduce in the marginal environment, and (ii) individuals of the marginal population show evidence of local adaptation. Individuals of the macroalga Fucus vesiculosus from the North Sea colonised the hyposaline (≥2–3‰) Baltic Sea less than 8000 years ago. The colonisation involved a switch from fully sexual to facultative asexual recruitment with release of adventitious branches that grow rhizoids and attach to the substratum. To test the predictions from the plasticity-first model we reciprocally transplanted F. vesiculosus from the original population (ambient salinity 24‰) and from the marginal population inside the Baltic Sea (ambient salinity 4‰). We also transplanted individuals of the Baltic endemic sister species F. radicans from 4 to 24‰. We assessed the degree of plasticity and local adaptation in growth and reproductive traits after 6 months by comparing the performance of individuals in 4 and 24‰. RESULTS: Branches of all individuals survived the 6 months period in both salinities, but grew better in their native salinity. Baltic Sea individuals more frequently developed asexual traits while North Sea individuals initiated formation of receptacles for sexual reproduction. CONCLUSIONS: Marine individuals of F. vesiculosus are highly plastic with respect to salinity and North Sea populations can survive the extreme hyposaline conditions of the Baltic Sea without selective mortality. Plasticity alone would thus allow for an initial establishment of this species inside the postglacial Baltic Sea at salinities where reproduction remains functional. Since establishment, the Baltic Sea populations have evolved adaptations to extreme hyposaline waters and have in addition evolved asexual recruitment that, however, tends to impede local adaptation. Overall, our results support the “plasticity-first” model for the initial colonisation of the Baltic Sea by Fucus vesiculosus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12898-017-0124-1) contains supplementary material, which is available to authorized users. BioMed Central 2017-04-05 /pmc/articles/PMC5382403/ /pubmed/28381278 http://dx.doi.org/10.1186/s12898-017-0124-1 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Johansson, Daniel Pereyra, Ricardo T. Rafajlović, Marina Johannesson, Kerstin Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga |
title | Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga |
title_full | Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga |
title_fullStr | Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga |
title_full_unstemmed | Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga |
title_short | Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga |
title_sort | reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382403/ https://www.ncbi.nlm.nih.gov/pubmed/28381278 http://dx.doi.org/10.1186/s12898-017-0124-1 |
work_keys_str_mv | AT johanssondaniel reciprocaltransplantssupportaplasticityfirstscenarioduringcolonisationofalargehyposalinebasinbyamarinemacroalga AT pereyraricardot reciprocaltransplantssupportaplasticityfirstscenarioduringcolonisationofalargehyposalinebasinbyamarinemacroalga AT rafajlovicmarina reciprocaltransplantssupportaplasticityfirstscenarioduringcolonisationofalargehyposalinebasinbyamarinemacroalga AT johannessonkerstin reciprocaltransplantssupportaplasticityfirstscenarioduringcolonisationofalargehyposalinebasinbyamarinemacroalga |