Cargando…
Linear filtering reveals false negatives in species interaction data
Species interaction datasets, often represented as sparse matrices, are usually collected through observation studies targeted at identifying species interactions. Due to the extensive required sampling effort, species interaction datasets usually contain many false negatives, often leading to bias...
Autores principales: | Stock, Michiel, Poisot, Timothée, Waegeman, Willem, De Baets, Bernard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382893/ https://www.ncbi.nlm.nih.gov/pubmed/28383526 http://dx.doi.org/10.1038/srep45908 |
Ejemplares similares
-
Optimal transportation theory for species interaction networks
por: Stock, Michiel, et al.
Publicado: (2021) -
Disentangling the Information in Species Interaction Networks
por: Stock, Michiel, et al.
Publicado: (2021) -
Cold-Start Problems in Data-Driven Prediction of Drug–Drug Interaction Effects
por: Dewulf, Pieter, et al.
Publicado: (2021) -
miSTAR: miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure
por: Van Peer, Gert, et al.
Publicado: (2017) -
From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification
por: Slabbinck, Bram, et al.
Publicado: (2010)