Cargando…
Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning
OBJECTIVE: To demonstrate the incremental benefit of using free text data in addition to vital sign and demographic data to identify patients with suspected infection in the emergency department. METHODS: This was a retrospective, observational cohort study performed at a tertiary academic teaching...
Autores principales: | Horng, Steven, Sontag, David A., Halpern, Yoni, Jernite, Yacine, Shapiro, Nathan I., Nathanson, Larry A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383046/ https://www.ncbi.nlm.nih.gov/pubmed/28384212 http://dx.doi.org/10.1371/journal.pone.0174708 |
Ejemplares similares
-
Challenges and Opportunities for Emergency Department Sepsis Screening at Triage
por: Filbin, Michael R., et al.
Publicado: (2018) -
Electronic medical record phenotyping using the anchor and learn framework
por: Halpern, Yoni, et al.
Publicado: (2016) -
Learning a Health Knowledge Graph from Electronic Medical Records
por: Rotmensch, Maya, et al.
Publicado: (2017) -
Smart triage: triage and management of sepsis in children using the point-of-care Pediatric Rapid Sepsis Trigger (PRST) tool
por: Mawji, Alishah, et al.
Publicado: (2020) -
An Automated Tobacco Cessation Intervention for Emergency Department Discharged Patients
por: Chiu, David T., et al.
Publicado: (2021)