Cargando…
The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate
Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383271/ https://www.ncbi.nlm.nih.gov/pubmed/28384347 http://dx.doi.org/10.1371/journal.pone.0175230 |
_version_ | 1782520254064230400 |
---|---|
author | Rademaker, Rosanne L. van de Ven, Vincent G. Tong, Frank Sack, Alexander T. |
author_facet | Rademaker, Rosanne L. van de Ven, Vincent G. Tong, Frank Sack, Alexander T. |
author_sort | Rademaker, Rosanne L. |
collection | PubMed |
description | Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. |
format | Online Article Text |
id | pubmed-5383271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53832712017-05-03 The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate Rademaker, Rosanne L. van de Ven, Vincent G. Tong, Frank Sack, Alexander T. PLoS One Research Article Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. Public Library of Science 2017-04-06 /pmc/articles/PMC5383271/ /pubmed/28384347 http://dx.doi.org/10.1371/journal.pone.0175230 Text en © 2017 Rademaker et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Rademaker, Rosanne L. van de Ven, Vincent G. Tong, Frank Sack, Alexander T. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate |
title | The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate |
title_full | The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate |
title_fullStr | The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate |
title_full_unstemmed | The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate |
title_short | The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate |
title_sort | impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383271/ https://www.ncbi.nlm.nih.gov/pubmed/28384347 http://dx.doi.org/10.1371/journal.pone.0175230 |
work_keys_str_mv | AT rademakerrosannel theimpactofearlyvisualcortextranscranialmagneticstimulationonvisualworkingmemoryprecisionandguessrate AT vandevenvincentg theimpactofearlyvisualcortextranscranialmagneticstimulationonvisualworkingmemoryprecisionandguessrate AT tongfrank theimpactofearlyvisualcortextranscranialmagneticstimulationonvisualworkingmemoryprecisionandguessrate AT sackalexandert theimpactofearlyvisualcortextranscranialmagneticstimulationonvisualworkingmemoryprecisionandguessrate AT rademakerrosannel impactofearlyvisualcortextranscranialmagneticstimulationonvisualworkingmemoryprecisionandguessrate AT vandevenvincentg impactofearlyvisualcortextranscranialmagneticstimulationonvisualworkingmemoryprecisionandguessrate AT tongfrank impactofearlyvisualcortextranscranialmagneticstimulationonvisualworkingmemoryprecisionandguessrate AT sackalexandert impactofearlyvisualcortextranscranialmagneticstimulationonvisualworkingmemoryprecisionandguessrate |