Cargando…
Actomyosin based contraction: one mechanokinetic model from single molecules to muscle?
Bridging the gaps between experimental systems on different hierarchical scales is needed to overcome remaining challenges in the understanding of muscle contraction. Here, a mathematical model with well-characterized structural and biochemical actomyosin states is developed to that end. We hypothes...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383694/ https://www.ncbi.nlm.nih.gov/pubmed/27864648 http://dx.doi.org/10.1007/s10974-016-9458-0 |
_version_ | 1782520324136370176 |
---|---|
author | Månsson, Alf |
author_facet | Månsson, Alf |
author_sort | Månsson, Alf |
collection | PubMed |
description | Bridging the gaps between experimental systems on different hierarchical scales is needed to overcome remaining challenges in the understanding of muscle contraction. Here, a mathematical model with well-characterized structural and biochemical actomyosin states is developed to that end. We hypothesize that this model accounts for generation of force and motion from single motor molecules to the large ensembles of muscle. In partial support of this idea, a wide range of contractile phenomena are reproduced without the need to invoke cooperative interactions or ad hoc states/transitions. However, remaining limitations exist, associated with ambiguities in available data for model definition e.g.: (1) the affinity of weakly bound cross-bridges, (2) the characteristics of the cross-bridge elasticity and (3) the exact mechanistic relationship between the force-generating transition and phosphate release in the actomyosin ATPase. Further, the simulated number of attached myosin heads in the in vitro motility assay differs several-fold from duty ratios, (fraction of strongly attached ATPase cycle times) derived in standard analysis. After addressing the mentioned issues the model should be useful in fundamental studies, for engineering of myosin motors as well as for studies of muscle disease and drug development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10974-016-9458-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5383694 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-53836942017-04-20 Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? Månsson, Alf J Muscle Res Cell Motil Original Article Bridging the gaps between experimental systems on different hierarchical scales is needed to overcome remaining challenges in the understanding of muscle contraction. Here, a mathematical model with well-characterized structural and biochemical actomyosin states is developed to that end. We hypothesize that this model accounts for generation of force and motion from single motor molecules to the large ensembles of muscle. In partial support of this idea, a wide range of contractile phenomena are reproduced without the need to invoke cooperative interactions or ad hoc states/transitions. However, remaining limitations exist, associated with ambiguities in available data for model definition e.g.: (1) the affinity of weakly bound cross-bridges, (2) the characteristics of the cross-bridge elasticity and (3) the exact mechanistic relationship between the force-generating transition and phosphate release in the actomyosin ATPase. Further, the simulated number of attached myosin heads in the in vitro motility assay differs several-fold from duty ratios, (fraction of strongly attached ATPase cycle times) derived in standard analysis. After addressing the mentioned issues the model should be useful in fundamental studies, for engineering of myosin motors as well as for studies of muscle disease and drug development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10974-016-9458-0) contains supplementary material, which is available to authorized users. Springer International Publishing 2016-11-18 2016 /pmc/articles/PMC5383694/ /pubmed/27864648 http://dx.doi.org/10.1007/s10974-016-9458-0 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Månsson, Alf Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? |
title | Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? |
title_full | Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? |
title_fullStr | Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? |
title_full_unstemmed | Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? |
title_short | Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? |
title_sort | actomyosin based contraction: one mechanokinetic model from single molecules to muscle? |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383694/ https://www.ncbi.nlm.nih.gov/pubmed/27864648 http://dx.doi.org/10.1007/s10974-016-9458-0 |
work_keys_str_mv | AT manssonalf actomyosinbasedcontractiononemechanokineticmodelfromsinglemoleculestomuscle |