Cargando…

General guidelines for biomedical software development

Most bioinformatics tools available today were not written by professional software developers, but by people that wanted to solve their own problems, using computational solutions and spending the minimum time and effort possible, since these were just the means to an end. Consequently, a vast numb...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Luis Bastiao, Jimenez, Rafael C., Blomberg, Niklas, Luis Oliveira, José
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000Research 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383938/
https://www.ncbi.nlm.nih.gov/pubmed/28443186
http://dx.doi.org/10.12688/f1000research.10750.2
Descripción
Sumario:Most bioinformatics tools available today were not written by professional software developers, but by people that wanted to solve their own problems, using computational solutions and spending the minimum time and effort possible, since these were just the means to an end. Consequently, a vast number of software applications are currently available, hindering the task of identifying the utility and quality of each. At the same time, this situation has hindered regular adoption of these tools in clinical practice. Typically, they are not sufficiently developed to be used by most clinical researchers and practitioners. To address these issues, it is necessary to re-think how biomedical applications are built and adopt new strategies that ensure quality, efficiency, robustness, correctness and reusability of software components. We also need to engage end-users during the development process to ensure that applications fit their needs. In this review, we present a set of guidelines to support biomedical software development, with an explanation of how they can be implemented and what kind of open-source tools can be used for each specific topic.