Cargando…
Time-dependent ROC curve analysis in medical research: current methods and applications
BACKGROUND: ROC (receiver operating characteristic) curve analysis is well established for assessing how well a marker is capable of discriminating between individuals who experience disease onset and individuals who do not. The classical (standard) approach of ROC curve analysis considers event (di...
Autores principales: | Kamarudin, Adina Najwa, Cox, Trevor, Kolamunnage-Dona, Ruwanthi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384160/ https://www.ncbi.nlm.nih.gov/pubmed/28388943 http://dx.doi.org/10.1186/s12874-017-0332-6 |
Ejemplares similares
-
Investigation of 2‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application
por: Sudell, Maria, et al.
Publicado: (2017) -
Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application
por: Sudell, Maria, et al.
Publicado: (2018) -
Sample size formula for joint modelling of longitudinal and time-to-event data in clinical trials
por: Powney, Matthew, et al.
Publicado: (2013) -
Roc curves for continuous data
por: Krzanowski, Wojtek J, et al.
Publicado: (2009) -
Application of the skew exponential power distribution to ROC curves
por: Attwood, Kristopher, et al.
Publicado: (2022)