Cargando…
Naked d-orbital in a centrochiral Ni(II) complex as a catalyst for asymmetric [3+2] cycloaddition
Chiral metal catalysts have been widely applied to asymmetric transformations. However, the electronic structure of the catalyst and how it contributes to the activation of the substrate is seldom investigated. Here, we report an empirical approach for providing insights into the catalytic activatio...
Autores principales: | Sohtome, Yoshihiro, Nakamura, Genta, Muranaka, Atsuya, Hashizume, Daisuke, Lectard, Sylvain, Tsuchimoto, Teruhisa, Uchiyama, Masanobu, Sodeoka, Mikiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384211/ https://www.ncbi.nlm.nih.gov/pubmed/28383035 http://dx.doi.org/10.1038/ncomms14875 |
Ejemplares similares
-
Experimental and
Computational Investigation of Facial
Selectivity Switching in Nickel–Diamine–Acetate-Catalyzed
Michael Reactions
por: Sohtome, Yoshihiro, et al.
Publicado: (2023) -
Asymmetric Lewis acid catalysis directed by octahedral rhodium centrochirality
por: Wang, Chuanyong, et al.
Publicado: (2015) -
Asymmetric synthesis, structures, and chiroptical properties of helical cycloparaphenylenes
por: Nogami, Juntaro, et al.
Publicado: (2021) -
Selenium-Based S-Adenosylmethionine Analog Reveals the Mammalian Seven-Beta-Strand Methyltransferase METTL10 to Be an EF1A1 Lysine Methyltransferase
por: Shimazu, Tadahiro, et al.
Publicado: (2014) -
Pd‐catalyzed Aerobic Cross‐Dehydrogenative Coupling of Catechols with 2‐Oxindoles and Benzofuranones: Reactivity Difference Between Monomer and Dimer
por: Sugawara, Masumi, et al.
Publicado: (2022)