Cargando…
Diabetic Cardiomyopathy: An Immunometabolic Perspective
The heart possesses a remarkable inherent capability to adapt itself to a wide array of genetic and extrinsic factors to maintain contractile function. Failure to sustain its compensatory responses results in cardiac dysfunction, leading to cardiomyopathy. Diabetic cardiomyopathy (DCM) is characteri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384479/ https://www.ncbi.nlm.nih.gov/pubmed/28439258 http://dx.doi.org/10.3389/fendo.2017.00072 |
_version_ | 1782520468764360704 |
---|---|
author | Mishra, Paras K. Ying, Wei Nandi, Shyam Sundar Bandyopadhyay, Gautam K. Patel, Kaushik K. Mahata, Sushil K. |
author_facet | Mishra, Paras K. Ying, Wei Nandi, Shyam Sundar Bandyopadhyay, Gautam K. Patel, Kaushik K. Mahata, Sushil K. |
author_sort | Mishra, Paras K. |
collection | PubMed |
description | The heart possesses a remarkable inherent capability to adapt itself to a wide array of genetic and extrinsic factors to maintain contractile function. Failure to sustain its compensatory responses results in cardiac dysfunction, leading to cardiomyopathy. Diabetic cardiomyopathy (DCM) is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction in the absence of hypertension and coronary artery disease. Changes in substrate metabolism, oxidative stress, endoplasmic reticulum stress, formation of extracellular matrix proteins, and advanced glycation end products constitute the early stage in DCM. These early events are followed by steatosis (accumulation of lipid droplets) in cardiomyocytes, which is followed by apoptosis, changes in immune responses with a consequent increase in fibrosis, remodeling of cardiomyocytes, and the resultant decrease in cardiac function. The heart is an omnivore, metabolically flexible, and consumes the highest amount of ATP in the body. Altered myocardial substrate and energy metabolism initiate the development of DCM. Diabetic hearts shift away from the utilization of glucose, rely almost completely on fatty acids (FAs) as the energy source, and become metabolically inflexible. Oxidation of FAs is metabolically inefficient as it consumes more energy. In addition to metabolic inflexibility and energy inefficiency, the diabetic heart suffers from impaired calcium handling with consequent alteration of relaxation–contraction dynamics leading to diastolic and systolic dysfunction. Sarcoplasmic reticulum (SR) plays a key role in excitation–contraction coupling as Ca(2+) is transported into the SR by the SERCA2a (sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a) during cardiac relaxation. Diabetic cardiomyocytes display decreased SERCA2a activity and leaky Ca(2+) release channel resulting in reduced SR calcium load. The diabetic heart also suffers from marked downregulation of novel cardioprotective microRNAs (miRNAs) discovered recently. Since immune responses and substrate energy metabolism are critically altered in diabetes, the present review will focus on immunometabolism and miRNAs. |
format | Online Article Text |
id | pubmed-5384479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53844792017-04-24 Diabetic Cardiomyopathy: An Immunometabolic Perspective Mishra, Paras K. Ying, Wei Nandi, Shyam Sundar Bandyopadhyay, Gautam K. Patel, Kaushik K. Mahata, Sushil K. Front Endocrinol (Lausanne) Endocrinology The heart possesses a remarkable inherent capability to adapt itself to a wide array of genetic and extrinsic factors to maintain contractile function. Failure to sustain its compensatory responses results in cardiac dysfunction, leading to cardiomyopathy. Diabetic cardiomyopathy (DCM) is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction in the absence of hypertension and coronary artery disease. Changes in substrate metabolism, oxidative stress, endoplasmic reticulum stress, formation of extracellular matrix proteins, and advanced glycation end products constitute the early stage in DCM. These early events are followed by steatosis (accumulation of lipid droplets) in cardiomyocytes, which is followed by apoptosis, changes in immune responses with a consequent increase in fibrosis, remodeling of cardiomyocytes, and the resultant decrease in cardiac function. The heart is an omnivore, metabolically flexible, and consumes the highest amount of ATP in the body. Altered myocardial substrate and energy metabolism initiate the development of DCM. Diabetic hearts shift away from the utilization of glucose, rely almost completely on fatty acids (FAs) as the energy source, and become metabolically inflexible. Oxidation of FAs is metabolically inefficient as it consumes more energy. In addition to metabolic inflexibility and energy inefficiency, the diabetic heart suffers from impaired calcium handling with consequent alteration of relaxation–contraction dynamics leading to diastolic and systolic dysfunction. Sarcoplasmic reticulum (SR) plays a key role in excitation–contraction coupling as Ca(2+) is transported into the SR by the SERCA2a (sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a) during cardiac relaxation. Diabetic cardiomyocytes display decreased SERCA2a activity and leaky Ca(2+) release channel resulting in reduced SR calcium load. The diabetic heart also suffers from marked downregulation of novel cardioprotective microRNAs (miRNAs) discovered recently. Since immune responses and substrate energy metabolism are critically altered in diabetes, the present review will focus on immunometabolism and miRNAs. Frontiers Media S.A. 2017-04-07 /pmc/articles/PMC5384479/ /pubmed/28439258 http://dx.doi.org/10.3389/fendo.2017.00072 Text en Copyright © 2017 Mishra, Ying, Nandi, Bandyopadhyay, Patel and Mahata. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Mishra, Paras K. Ying, Wei Nandi, Shyam Sundar Bandyopadhyay, Gautam K. Patel, Kaushik K. Mahata, Sushil K. Diabetic Cardiomyopathy: An Immunometabolic Perspective |
title | Diabetic Cardiomyopathy: An Immunometabolic Perspective |
title_full | Diabetic Cardiomyopathy: An Immunometabolic Perspective |
title_fullStr | Diabetic Cardiomyopathy: An Immunometabolic Perspective |
title_full_unstemmed | Diabetic Cardiomyopathy: An Immunometabolic Perspective |
title_short | Diabetic Cardiomyopathy: An Immunometabolic Perspective |
title_sort | diabetic cardiomyopathy: an immunometabolic perspective |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384479/ https://www.ncbi.nlm.nih.gov/pubmed/28439258 http://dx.doi.org/10.3389/fendo.2017.00072 |
work_keys_str_mv | AT mishraparask diabeticcardiomyopathyanimmunometabolicperspective AT yingwei diabeticcardiomyopathyanimmunometabolicperspective AT nandishyamsundar diabeticcardiomyopathyanimmunometabolicperspective AT bandyopadhyaygautamk diabeticcardiomyopathyanimmunometabolicperspective AT patelkaushikk diabeticcardiomyopathyanimmunometabolicperspective AT mahatasushilk diabeticcardiomyopathyanimmunometabolicperspective |