Cargando…

A role for miR-19 in the migration of adult-born neurons and schizophrenia

The latest miRNA database (Release 21) annotated 2588 and 1915 miRNAs in the human and mouse genomes, respectively.(1) However, the biological roles of miRNAs in vivo remain largely unknown. In particular, the physiological and pathological roles of individual microRNAs in the brain have not been in...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Jinju, Gage, Fred H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384614/
https://www.ncbi.nlm.nih.gov/pubmed/28405585
http://dx.doi.org/10.1080/23262133.2016.1251873
Descripción
Sumario:The latest miRNA database (Release 21) annotated 2588 and 1915 miRNAs in the human and mouse genomes, respectively.(1) However, the biological roles of miRNAs in vivo remain largely unknown. In particular, the physiological and pathological roles of individual microRNAs in the brain have not been investigated extensively although expression profiles of microRNAs have been reported in many given conditions. In a recent study,(2) we identified miR-19, which is enriched in adult hippocampal neural progenitor cells (NPCs), as a key regulator for adult hippocampal neurogenesis. miR-19 is an intrinsic factor regulating the migration of newborn neurons by modulating expression level of RAPGEF2. After observing the abnormal expression patterns of miR-19 and RAPGEF2 in NPCs derived from induced pluripotent stem cells of schizophrenic patients, which display aberrant cell migration, we proposed miR-19 as a molecule associated with schizophrenia. The results illustrate that a single microRNA has the potential to impact the functions of the brain. Identifying miRNA-mediated posttranscriptional gene regulation in the brain will expand our understanding of brain development and functions and the etiologies of several brain disorders.