Cargando…
Marginalized mixture models for count data from multiple source populations
Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often intereste...
Autores principales: | Benecha, Habtamu K., Neelon, Brian, Divaris, Kimon, Preisser, John S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384970/ https://www.ncbi.nlm.nih.gov/pubmed/28446995 http://dx.doi.org/10.1186/s40488-017-0057-4 |
Ejemplares similares
-
Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions
por: Tokuda, Tomoki, et al.
Publicado: (2017) -
BZINB model-based pathway analysis and module identification facilitates integration of microbiome and metabolome data
por: Lin, Bridget, et al.
Publicado: (2023) -
Genomics of periodontal disease and tooth morbidity
por: Morelli, Thiago, et al.
Publicado: (2019) -
BZINB Model-Based Pathway Analysis and Module Identification Facilitates Integration of Microbiome and Metabolome Data
por: Lin, Bridget M., et al.
Publicado: (2023) -
The importance of preventive dental visits from a young age: systematic review and current perspectives
por: Bhaskar, Vaishnavi, et al.
Publicado: (2014)