Cargando…
A real-time phenotyping framework using machine learning for plant stress severity rating in soybean
BACKGROUND: Phenotyping is a critical component of plant research. Accurate and precise trait collection, when integrated with genetic tools, can greatly accelerate the rate of genetic gain in crop improvement. However, efficient and automatic phenotyping of traits across large populations is a chal...
Autores principales: | Naik, Hsiang Sing, Zhang, Jiaoping, Lofquist, Alec, Assefa, Teshale, Sarkar, Soumik, Ackerman, David, Singh, Arti, Singh, Asheesh K., Ganapathysubramanian, Baskar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385078/ https://www.ncbi.nlm.nih.gov/pubmed/28405214 http://dx.doi.org/10.1186/s13007-017-0173-7 |
Ejemplares similares
-
Computer vision and machine learning for robust phenotyping in genome-wide studies
por: Zhang, Jiaoping, et al.
Publicado: (2017) -
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity
por: Jubery, Talukder Z., et al.
Publicado: (2017) -
An explainable deep machine vision framework for plant stress phenotyping
por: Ghosal, Sambuddha, et al.
Publicado: (2018) -
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
por: Nagasubramanian, Koushik, et al.
Publicado: (2018)