Cargando…

Over-expression of myosin7A in cochlear hair cells of circling mice

Circling mouse (C57BL/6J-cir/cir) deleted the transmembrane inner ear (Tmie) gene is an animal model for human non-syndromic recessive deafness, DFNB6. In circling mouse, hair cells in the cochlea have degenerated and hair bundles have become irregularity as time goes on. Tmie protein carries out a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yoo Yeon, Nam, Hajin, Jung, Harry, Kim, Boyoung, Suh, Jun Gyo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Association for Laboratory Animal Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385277/
https://www.ncbi.nlm.nih.gov/pubmed/28400833
http://dx.doi.org/10.5625/lar.2017.33.1.1
Descripción
Sumario:Circling mouse (C57BL/6J-cir/cir) deleted the transmembrane inner ear (Tmie) gene is an animal model for human non-syndromic recessive deafness, DFNB6. In circling mouse, hair cells in the cochlea have degenerated and hair bundles have become irregularity as time goes on. Tmie protein carries out a function of the mechanoelectrical transduction channel in cochlear hair cells. Myosin7a (MYO7A) protein has key roles in development of the cochlear hair bundles as well as in the function of cochlear hair cells. To find whether Tmie protein interacts with MYO7A proteins in the cochlea postnatal developmental stage, we investigated expression of the MYO7A proteins in the cochlear hair cells of circling mice by western blot analysis and whole mount immunofluorescence at postnatal day 5 (P5). The expression of MYO7A showed statistically significant increase in the cochlea of C57BL/6J-+/cir and C57BL/6J-cir/cir mice than that of C57BL/6J-+/+ mice. The MYO7A intensity of the cochlear hair cells also increased in C57BL/6J-+/cir and C57BL/6J-cir/cir mice compared with those of C57BL/6J-+/+ mice. Taken together, the results indicate that Tmie protein may have an important role with MYO7A protein in the development and maintenance of the stereociliary bundles during postnatal developmental stage of the cochlea.