Cargando…
Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination
Using machine-learning methodologies to analyze EEG signals becomes increasingly attractive for recognizing human emotions because of the objectivity of physiological data and the capability of the learning principles on modeling emotion classifiers from heterogeneous features. However, the conventi...
Autores principales: | Yin, Zhong, Wang, Yongxiong, Liu, Li, Zhang, Wei, Zhang, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385370/ https://www.ncbi.nlm.nih.gov/pubmed/28443015 http://dx.doi.org/10.3389/fnbot.2017.00019 |
Ejemplares similares
-
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018) -
Manifold Feature Fusion with Dynamical Feature Selection for Cross-Subject Emotion Recognition
por: Hua, Yue, et al.
Publicado: (2021) -
Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
por: Yang, Fu, et al.
Publicado: (2019) -
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
por: Lu, Wei, et al.
Publicado: (2023) -
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
por: Zuo, Xin, et al.
Publicado: (2022)