Cargando…
Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision
Class I hydrophobins are functional amyloids secreted by fungi. They self-assemble into organized films at interfaces producing structures that include cellular adhesion points and hydrophobic coatings. Here, we present the first structure and solution properties of a unique Class I protein sequence...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385502/ https://www.ncbi.nlm.nih.gov/pubmed/28393921 http://dx.doi.org/10.1038/srep45863 |
Sumario: | Class I hydrophobins are functional amyloids secreted by fungi. They self-assemble into organized films at interfaces producing structures that include cellular adhesion points and hydrophobic coatings. Here, we present the first structure and solution properties of a unique Class I protein sequence of Basidiomycota origin: the Schizophyllum commune hydrophobin SC16 (hyd1). While the core β-barrel structure and disulphide bridging characteristic of the hydrophobin family are conserved, its surface properties and secondary structure elements are reminiscent of both Class I and II hydrophobins. Sequence analyses of hydrophobins from 215 fungal species suggest this structure is largely applicable to a high-identity Basidiomycota Class I subdivision (IB). To validate this prediction, structural analysis of a comparatively distinct Class IB sequence from a different fungal order, namely the Phanerochaete carnosa PcaHyd1, indicates secondary structure properties similar to that of SC16. Together, these results form an experimental basis for a high-identity Class I subdivision and contribute to our understanding of functional amyloid formation. |
---|