Cargando…
Maxdenominator Reweighted Sparse Representation for Tumor Classification
The classification of tumors is crucial for the proper treatment of cancer. Sparse representation-based classifier (SRC) exhibits good classification performance and has been successfully used to classify tumors using gene expression profile data. In this study, we propose a three-step maxdenominato...
Autores principales: | Li, Weibiao, Liao, Bo, Zhu, Wen, Chen, Min, Peng, Li, Wei, Xiaohui, Gu, Changlong, Li, Keqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385541/ https://www.ncbi.nlm.nih.gov/pubmed/28393883 http://dx.doi.org/10.1038/srep46030 |
Ejemplares similares
-
Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
Correction: Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
Sparse Representation for Classification of Tumors Using Gene Expression Data
por: Hang, Xiyi, et al.
Publicado: (2009) -
Fisher Discrimination Regularized Robust Coding Based on a Local Center for Tumor Classification
por: Li, Weibiao, et al.
Publicado: (2018) -
Reweighted Off-Grid Sparse Spectrum Fitting for DOA Estimation in Sensor Array with Unknown Mutual Coupling
por: Li, Liangliang, et al.
Publicado: (2023)