Cargando…
Multi-scale chromatin state annotation using a hierarchical hidden Markov model
Chromatin-state analysis is widely applied in the studies of development and diseases. However, existing methods operate at a single length scale, and therefore cannot distinguish large domains from isolated elements of the same type. To overcome this limitation, we present a hierarchical hidden Mar...
Autores principales: | Marco, Eugenio, Meuleman, Wouter, Huang, Jialiang, Glass, Kimberly, Pinello, Luca, Wang, Jianrong, Kellis, Manolis, Yuan, Guo-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385569/ https://www.ncbi.nlm.nih.gov/pubmed/28387224 http://dx.doi.org/10.1038/ncomms15011 |
Ejemplares similares
-
Smart Annotation of Cyclic Data Using Hierarchical Hidden Markov Models
por: Martindale, Christine F., et al.
Publicado: (2017) -
Discovery and characterization of chromatin states for systematic annotation of the human genome
por: Ernst, Jason, et al.
Publicado: (2010) -
Predicting chromatin organization using histone marks
por: Huang, Jialiang, et al.
Publicado: (2015) -
Exploring chromatin hierarchical organization via Markov State Modelling
por: Tan, Zhen Wah, et al.
Publicado: (2018) -
Discovering and mapping chromatin states using a tree hidden Markov model
por: Biesinger, Jacob, et al.
Publicado: (2013)