Cargando…

Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity

Fe-based bulk metallic glasses (BMGs) have attracted great attention due to their unique magnetic and mechanical properties, but few applications have been materialized because of their brittleness at room temperature. Here we report a new Fe(50)Ni(30)P(13)C(7) BMG which exhibits unprecedented compr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Weiming, Liu, Haishun, Zhao, Yucheng, Inoue, Akihisa, Jiang, Kemin, Huo, Juntao, Ling, Haibo, Li, Qiang, Shen, Baolong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385824/
https://www.ncbi.nlm.nih.gov/pubmed/25167887
http://dx.doi.org/10.1038/srep06233
Descripción
Sumario:Fe-based bulk metallic glasses (BMGs) have attracted great attention due to their unique magnetic and mechanical properties, but few applications have been materialized because of their brittleness at room temperature. Here we report a new Fe(50)Ni(30)P(13)C(7) BMG which exhibits unprecedented compressive plasticity (>20%) at room temperature without final fracture. The mechanism of unprecedented plasticity for this new Fe-based BMG was also investigated. It was discovered that the ductile Fe(50)Ni(30)P(13)C(7) BMG is composed of unique clusters mainly linked by less directional metal-metal bonds which are inclined to accommodate shear strain and absorbed energy in the front of crack tip. This conclusion was further verified by the X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy experiments of Fe(80-x)Ni(x)P(13)C(7) (x = 0, 10, 20, 30) and Fe(72-x)Ni(x)B(20)Si(4)Nb(4) (x = 0, 7.2, 14.4, 21.6, 28.8) glassy systems. The results also indicate a strong correlation between the p-d hybridization and plasticity, verifying that the transition from brittle to ductile induced by Ni addition is due to the change of bonding characteristics in atomic configurations. Thus, we can design the plasticity of Fe-based BMGs and open up a new possible pathway for manufacturing BMGs with high strength and plasticity.