Cargando…
Predicting disease progression from short biomarker series using expert advice algorithm
Well-trained clinicians may be able to provide diagnosis and prognosis from very short biomarker series using information and experience gained from previous patients. Although mathematical methods can potentially help clinicians to predict the progression of diseases, there is no method so far that...
Autores principales: | Morino, Kai, Hirata, Yoshito, Tomioka, Ryota, Kashima, Hisashi, Yamanishi, Kenji, Hayashi, Norihiro, Egawa, Shin, Aihara, Kazuyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386184/ https://www.ncbi.nlm.nih.gov/pubmed/25989741 http://dx.doi.org/10.1038/srep08953 |
Ejemplares similares
-
Personalizing Androgen Suppression for Prostate Cancer Using Mathematical Modeling
por: Hirata, Yoshito, et al.
Publicado: (2018) -
Improve how science advice is provided to governments by learning from “experts in expert advice”
por: Pielke, Roger
Publicado: (2023) -
Forecasting high-dimensional dynamics exploiting suboptimal embeddings
por: Okuno, Shunya, et al.
Publicado: (2020) -
Detecting Causality from Nonlinear Dynamics with Short-term Time Series
por: Ma, Huanfei, et al.
Publicado: (2014) -
Intermittent Androgen Suppression: Estimating Parameters for Individual Patients Based on Initial PSA Data in Response to Androgen Deprivation Therapy
por: Hirata, Yoshito, et al.
Publicado: (2015)