Cargando…

Smad7 knockdown activates protein kinase RNA-associated eIF2α pathway leading to colon cancer cell death

Upregulation of Smad7, an inhibitor of transforming growth factor-β1 (TGF-β1), occurs in sporadic colorectal cancer (CRC) and knockdown of Smad7 inhibits CRC cell growth, a phenomenon that associates with decreased expression of cell division cycle 25 homolog A and arrest of cells in the S phase of...

Descripción completa

Detalles Bibliográficos
Autores principales: De Simone, Veronica, Bevivino, Gerolamo, Sedda, Silvia, Izzo, Roberta, Laudisi, Federica, Dinallo, Vincenzo, Franzè, Eleonora, Colantoni, Alfredo, Ortenzi, Angela, Salvatori, Silvia, Rossi, Piero, Sica, Giuseppe S, Fantini, Massimo C, Stolfi, Carmine, Monteleone, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386514/
https://www.ncbi.nlm.nih.gov/pubmed/28300830
http://dx.doi.org/10.1038/cddis.2017.103
Descripción
Sumario:Upregulation of Smad7, an inhibitor of transforming growth factor-β1 (TGF-β1), occurs in sporadic colorectal cancer (CRC) and knockdown of Smad7 inhibits CRC cell growth, a phenomenon that associates with decreased expression of cell division cycle 25 homolog A and arrest of cells in the S phase of the cell cycle. These findings occur in CRC cells unresponsive to TGF-β1, thus suggesting the existence of a Smad7-mediated TGF-β1-independent mechanism that controls CRC cell behavior. Here we show that Smad7 inhibition with a specific Smad7 antisense oligonucleotide upregulates eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, a transcription factor involved in the regulation of cell cycle arrest and induction of cell death, and induces activating transcription factor 4 (ATF4) and CCAAT/enhancer binding protein homology protein (CHOP), two downstream targets of eIF2α. Among the upstream kinases that control eIF2α phosphorylation, the serine–threonine protein kinase RNA (PKR), but not general control non-derepressible 2 (GCN2) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), is activated by Smad7 knockdown. PKR silencing abolishes Smad7 antisense-induced eIF2α phosphorylation and ATF4/CHOP induction, thereby preventing Smad7 antisense-driven cell death. Smad7 inhibition diminishes interaction of PKR with protein kinase inhibitor p58 (p58(IPK)), a cellular inhibitor of PKR, but does not change the expression and/or activity of other factors involved in the control of PKR activation. These findings delineate a novel mechanism by which Smad7 knockdown promotes CRC cell death.