Cargando…
Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors
Brain tumors are the leading cause of cancer-related death in children but high-grade gliomas in children and adolescents have remained a relatively under-investigated disease despite this. A better understanding of the cellular and molecular pathogenesis of the diseases is required in order to impr...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386635/ https://www.ncbi.nlm.nih.gov/pubmed/28148893 http://dx.doi.org/10.18632/oncotarget.14826 |
_version_ | 1782520806166757376 |
---|---|
author | Wenger, Anna Larsson, Susanna Danielsson, Anna Elbæk, Kirstine Juul Kettunen, Petronella Tisell, Magnus Sabel, Magnus Lannering, Birgitta Nordborg, Claes Schepke, Elizabeth Carén, Helena |
author_facet | Wenger, Anna Larsson, Susanna Danielsson, Anna Elbæk, Kirstine Juul Kettunen, Petronella Tisell, Magnus Sabel, Magnus Lannering, Birgitta Nordborg, Claes Schepke, Elizabeth Carén, Helena |
author_sort | Wenger, Anna |
collection | PubMed |
description | Brain tumors are the leading cause of cancer-related death in children but high-grade gliomas in children and adolescents have remained a relatively under-investigated disease despite this. A better understanding of the cellular and molecular pathogenesis of the diseases is required in order to improve the outcome for these children. In vitro-cultured primary tumor cells from patients are indispensable tools for this purpose by enabling functional analyses and development of new therapies. However, relevant well-characterized in vitro cultures from pediatric gliomas cultured under serum-free conditions have been lacking. We have therefore established patient-derived in vitro cultures and performed thorough characterization of the cells using large-scale analyses of DNA methylation, copy-number alterations and investigated their stability during prolonged time in culture. We show that the cells were stable during prolonged culture in serum-free stem cell media without apparent alterations in morphology or growth rate. The cells were proliferative, positive for stem cell markers, able to respond to differentiation cues and initiated tumors in zebrafish and mice suggesting that the cells are cancer stem cells or progenitor cells. The cells accurately mirrored the tumor they were derived from in terms of methylation pattern, copy number alterations and DNA mutations. These unique primary in vitro cultures can thus be used as a relevant and robust model system for functional studies on pediatric brain tumors. |
format | Online Article Text |
id | pubmed-5386635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-53866352017-04-26 Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors Wenger, Anna Larsson, Susanna Danielsson, Anna Elbæk, Kirstine Juul Kettunen, Petronella Tisell, Magnus Sabel, Magnus Lannering, Birgitta Nordborg, Claes Schepke, Elizabeth Carén, Helena Oncotarget Priority Research Paper Brain tumors are the leading cause of cancer-related death in children but high-grade gliomas in children and adolescents have remained a relatively under-investigated disease despite this. A better understanding of the cellular and molecular pathogenesis of the diseases is required in order to improve the outcome for these children. In vitro-cultured primary tumor cells from patients are indispensable tools for this purpose by enabling functional analyses and development of new therapies. However, relevant well-characterized in vitro cultures from pediatric gliomas cultured under serum-free conditions have been lacking. We have therefore established patient-derived in vitro cultures and performed thorough characterization of the cells using large-scale analyses of DNA methylation, copy-number alterations and investigated their stability during prolonged time in culture. We show that the cells were stable during prolonged culture in serum-free stem cell media without apparent alterations in morphology or growth rate. The cells were proliferative, positive for stem cell markers, able to respond to differentiation cues and initiated tumors in zebrafish and mice suggesting that the cells are cancer stem cells or progenitor cells. The cells accurately mirrored the tumor they were derived from in terms of methylation pattern, copy number alterations and DNA mutations. These unique primary in vitro cultures can thus be used as a relevant and robust model system for functional studies on pediatric brain tumors. Impact Journals LLC 2017-01-26 /pmc/articles/PMC5386635/ /pubmed/28148893 http://dx.doi.org/10.18632/oncotarget.14826 Text en Copyright: © 2017 Wenger et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Priority Research Paper Wenger, Anna Larsson, Susanna Danielsson, Anna Elbæk, Kirstine Juul Kettunen, Petronella Tisell, Magnus Sabel, Magnus Lannering, Birgitta Nordborg, Claes Schepke, Elizabeth Carén, Helena Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors |
title | Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors |
title_full | Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors |
title_fullStr | Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors |
title_full_unstemmed | Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors |
title_short | Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors |
title_sort | stem cell cultures derived from pediatric brain tumors accurately model the originating tumors |
topic | Priority Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386635/ https://www.ncbi.nlm.nih.gov/pubmed/28148893 http://dx.doi.org/10.18632/oncotarget.14826 |
work_keys_str_mv | AT wengeranna stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT larssonsusanna stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT danielssonanna stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT elbækkirstinejuul stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT kettunenpetronella stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT tisellmagnus stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT sabelmagnus stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT lanneringbirgitta stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT nordborgclaes stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT schepkeelizabeth stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors AT carenhelena stemcellculturesderivedfrompediatricbraintumorsaccuratelymodeltheoriginatingtumors |