Cargando…

Comparative Transcriptomics of Malaria Mosquito Testes: Function, Evolution, and Linkage

Testes-biased genes evolve rapidly and are important in the establishment, solidification, and maintenance of reproductive isolation between incipient species. The Anopheles gambiae complex, a group of at least eight isomorphic mosquito species endemic to Sub-Saharan Africa, is an excellent system t...

Descripción completa

Detalles Bibliográficos
Autores principales: Cassone, Bryan J., Kay, Raissa G. G., Daugherty, Matthew P., White, Bradley J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386861/
https://www.ncbi.nlm.nih.gov/pubmed/28159865
http://dx.doi.org/10.1534/g3.117.040089
Descripción
Sumario:Testes-biased genes evolve rapidly and are important in the establishment, solidification, and maintenance of reproductive isolation between incipient species. The Anopheles gambiae complex, a group of at least eight isomorphic mosquito species endemic to Sub-Saharan Africa, is an excellent system to explore the evolution of testes-biased genes. Within this group, the testes are an important tissue in the diversification process because hybridization between species results in sterile hybrid males, but fully fertile females. We conducted RNA sequencing of A. gambiae and A. merus carcass and testes to explore tissue- and species-specific patterns of gene expression. Our data provides support for transcriptional repression of X-linked genes in the male germline, which likely drives demasculinization of the X chromosome. Testes-biased genes predominately function in cellular differentiation and show a number of interesting patterns indicative of their rapid evolution, including elevated dN/dS values, low evolutionary conservation, poor annotation in existing reference genomes, and a high likelihood of differential expression between species.