Cargando…
Using generative models to make probabilistic statements about hippocampal engagement in MEG
Magnetoencephalography (MEG) enables non-invasive real time characterization of brain activity. However, convincing demonstrations of signal contributions from deeper sources such as the hippocampus remain controversial and are made difficult by its depth, structural complexity and proximity to neoc...
Autores principales: | Meyer, Sofie S., Rossiter, Holly, Brookes, Matthew J., Woolrich, Mark W., Bestmann, Sven, Barnes, Gareth R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5387160/ https://www.ncbi.nlm.nih.gov/pubmed/28131892 http://dx.doi.org/10.1016/j.neuroimage.2017.01.029 |
Ejemplares similares
-
Flexible head-casts for high spatial precision MEG
por: Meyer, Sofie S., et al.
Publicado: (2017) -
High precision anatomy for MEG()
por: Troebinger, Luzia, et al.
Publicado: (2014) -
Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage
por: Brookes, M.J., et al.
Publicado: (2012) -
Multi-session statistics on beamformed MEG data()
por: Luckhoo, Henry T., et al.
Publicado: (2014) -
Non-invasive laminar inference with MEG: Comparison of methods and source inversion algorithms
por: Bonaiuto, James J., et al.
Publicado: (2018)