Cargando…
Label Propagation Prediction of Drug-Drug Interactions Based on Clinical Side Effects
Drug-drug interaction (DDI) is an important topic for public health, and thus attracts attention from both academia and industry. Here we hypothesize that clinical side effects (SEs) provide a human phenotypic profile and can be translated into the development of computational models for predicting...
Autores principales: | Zhang, Ping, Wang, Fei, Hu, Jianying, Sorrentino, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5387872/ https://www.ncbi.nlm.nih.gov/pubmed/26196247 http://dx.doi.org/10.1038/srep12339 |
Ejemplares similares
-
Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information
por: Zhang, Wen, et al.
Publicado: (2017) -
Towards Personalized Medicine: Leveraging Patient Similarity and Drug Similarity Analytics
por: Zhang, Ping, et al.
Publicado: (2014) -
Systematic prediction of drug combinations based on clinical side-effects
por: Huang, Hui, et al.
Publicado: (2014) -
Predicting drug side effects by multi-label learning and ensemble learning
por: Zhang, Wen, et al.
Publicado: (2015) -
Predicting Drugs Side Effects Based on Chemical-Chemical Interactions and Protein-Chemical Interactions
por: Chen, Lei, et al.
Publicado: (2013)